

EPN2020-RI

EUROPLANET2020 Research Infrastructure

H2020-INFRAIA-2014-2015

Grant agreement no: 654208

Deliverable D6.16-Mobile Vespa application with
documentation and open source code

Due date of deliverable: 31/01/2019
Actual submission date: 30/01/2019

Start date of project: 01 September
2015

Duration: 48 months

Responsible WP Leader: Observatoire de Paris, Stephane Erard

Project funded by the European Union's Horizon 2020 research and innovation
programme

Dissemination level

PU Public ✔︎

PP Restricted to other programme participants (including the Commission Service)

RE Restricted to a group specified by the consortium (including the Commission
Services)

CO Confidential, only for members of the consortium (excluding the Commission
Services)

H2020-INFRAIA-2014-2015 – D6.16

 page 2 of 13

EPN2020 – RI

Project Number 654208

Project Title EPN2020 - RI

Project Duration 48 months: 01 September 2015 – 31
August 2019

Deliverable Number D6.16

Contractual Delivery date 31/01/2019

Actual delivery date 30/01/2019

Title of Deliverable Mobile VESPA application with
documentation and open source code

Contributing Work package
(s)

WP6

Dissemination level PU

Author (s) Carlos Henrique Brandt, Angelo Pio Rossi,
Mikhail Minin

Abstract: The VESPA mapping app has been developed as a mobile and
desktop web application, allowing exemplary access a selected subset of
mapping and imaging VESPA datasets. The app uses Open Source libraries
and frameworks and it can run on multiple platforms. The exemplary search
function can be extended and preview of data products links to individual
granules as external URLs and to VESPA portal query. The Mars footprint
and image/cube use case makes use of planetary web mapping basemaps
from OpenPlanetaryMap. When available on other planetary bodies, such as
the Moon, OPM basemaps will be used as well as geocoding based on
feature names.

Table of Contents
List of acronyms and abbreviations .. 3

Introduction .. 4
App architecture ... 4

The database ... 4
App components .. 5
Data collections .. 6

Geospatial-aware collections .. 6

App 7
Routes ... 7

Map .. 7
List ... 7

Database management system .. 8
Data sets ... 8

The s_region field .. 8

VESPA data download ... 9
App usability... 10
Future applications ... 11
Code repository .. 12

Reference libraries ... 12
References cited .. 12

H2020-INFRAIA-2014-2015 – D6.16

 page 3 of 13

EPN2020 – RI

List of figures

Figure 1: Software components and data workflow relation. In the left figure
the conceptual components of the software are depicted, while in the right
figure the underlying software technologies and main libraries are presented. 5

Figure 2: The internal structure of the App components and how data is
communicated internally. In the software model used the App is feed by an
external database .. 6

Figure 3: Examples of VESPA web app GUI for Mars. Left: Entry page.
Center: Mars OPM-based map and data product preview, with links to VESPA
granule pages. Right: OPM-based browsable map view and footprint
identification and different background basemaps. ... 10

Figure 4: Examples of VESPA web app GUI for Mars and linked pages. Left:
VESPA app with exemplary footprints loaded. Center: JacobsUni service with
access to individual spectra. Right: link to VESPA portal, usable also via
mobile .. 11

Figure 5: Left, center: Examples of VESPA linked granule/data product web
pages. Right: Jupyter full disk images previewed in the VESPA app 11

Figure 6: Left: Saturn full disk astronomic observations. Center: link to the
individual data product page/browse. Right: VESPA portal entry for the data.
 .. 11

List of acronyms and abbreviations

Acronym Explanation

DB Data Base

GUI Graphical User Interface

IVOA International Virtual Observatory Alliance

OPM OpenPlanetaryMap

UI User Interface

URL Uniform Resource Locator

H2020-INFRAIA-2014-2015 – D6.16

 page 4 of 13

EPN2020 – RI

Introduction

The VESPA-App is a web-mobile responsive interface to improve the users
experience on exploring planetary data. It is meant to be an extension,
simplified version of the main VESPA query portal. While the VESPA
portal provides specific options to query VO planetary services (aka EPN-TAP),
the VESPA-App provides a higher level, less technical interface to explore the
data in those services by offering the data products (images, footprints, spectra)
at first hand, and then linking the user to the services through the VESPA portal.

Another concept embedded in the App -- which reinforces the its
complementary aspect to the VESPA portal – is the continuous development
through an open community. User demands may and should evolve over time.
At the same time, underlying technologies will also evolve to better accomplish
the continuous increase of data volume and complexity. To keep our software
current to best practices and surrounding updates it is reasonable, cost-
effective to make the source code open to the public and motivate people –
users and developers – to contribute to their best experience.

The App is meant to present VO data through an interactive interface providing
a map viewer and the respective data items geolocated over the field of view
on the map whenever such information is available (EPN's s_region or c1, c2,
c3 fields). When such information is not present -- or for other technical reason
a map cannot be used --, data products are presented in a list-like interface with
the respective information and visualization controls suitable to the items at
hand.

App architecture

At the basis of the App structure there is Meteor, a framework that manages
the dependencies, server/client communication and the software lifecycle. To
structure the App components and reactive to data changes we make use
of React.js. Data is managed by MongoDB. Interactive maps are provided
by Leaflet. And Bootstrap is user to provide a responsive, elegant interface
allowing the user to access the App either a mobile device or a desktop
computer.

Figure 1 presents the diagram of the App major components and the flux of
data within it; the figure on the right uncovers technical specifications of the
conceptual figure from the left

The database

Contrary to the VESPA portal that queries EPN services in real-time, the
VESPA-App caches the services data in a serviced database. The main reason
for doing that is performance, to provide a better user experience. This decision
is supported from the scientific point-of-view since the datasets provided by
EPN services are stable enough to consider a daily update of our internal
database cache a much reasonable solution.

http://vespa.obspm.fr/
http://vespa.obspm.fr/
http://vespa.obspm.fr/
https://github.com/chbrandt/vespaapp
https://www.meteor.com/
https://reactjs.org/
https://www.mongodb.com/
https://leafletjs.com/
https://getbootstrap.com/

H2020-INFRAIA-2014-2015 – D6.16

 page 5 of 13

EPN2020 – RI

The database is MongoDB, where each document in the DB has a sub-set of
the data provided by the respective VO table, enough to (i) uniquely
identify/query in the original table, (ii) geolocate the data item, (iii) provide a
description or visualization for the user first-inspection.

In VO/EPN jargon, data items are granules (i.e., table records) uniquely
identified through the granule_uid and granule_gid fields. Each item has
a target_name field where the respective body (planet, asteroid) is informed --
an EPN service may provide information of different targets (planets, for
example) in the same table. Those are the most fundamental information used
by the App to organize data through its pages. Other EPN fields and how they
are used internally are discussed in the data docs.

Figure 1: Software components and data workflow relation. In the left figure the conceptual
components of the software are depicted, while in the right figure the underlying software
technologies and main libraries are presented.

App components

The App is composed by the following components:

 Data collections
 UI

o App
o Map
o List

H2020-INFRAIA-2014-2015 – D6.16

 page 6 of 13

EPN2020 – RI

Figure 2: The internal structure of the App components and how data is communicated
internally. In the software model used the App is feed by an external database

Data collections

Collections is the way Meteor communicates data between the Client and the
Server, and Server with the Database. In VESPA-App the data base is
managed by MongoDB, which lies in a third service, independent of Meteor.
Collections in MongoDB are part of a database to which we have the freedom to
name and is transparent to the App: when we start the (Meteor) Server, the
MongoDB database is directly given to it through the MONGO_URL environment
variable. Figure 2 is illustrative to understand the relation between the software
components and data collections, exclusively managed by the server for better
performance and better maintenance.

The way the Client has access to the different collections is by subscribing to
each of them (from the Client side) and by publishing each of them from the
Server side. This is done at the files in vespaapp/imports/api/data* (Server and
Client), vespaapp/server/main.js (Server only) and vespaapp/ui/App.js (Client only).

To feed the different pages of the App, it is reasonable to ask the Server to do
the hard work whenever possible; this increases the communication between
Client and Server but reduces the amount of data transmitted to the necessary
only. Also, depending on the query performed -- like aggregations or spatial
queries -- only the Server can perform, since the Client runs a minimal version
of MongoDB API (minimongo).

Geospatial-aware collections

Data sets containing geolocated granules -- entries providing non-
null s_region or c1,c2,c3 fields -- are stored in a dedicated collection inside
MongoDB (currently named CRISM).

MongoDB provides support for spatial queries: to query for points within a
certain distance, or intersecting polygons, for example, over the surface of a
planet. To make use of such feature, documents in the data base have to be
indexed accordingly using MongoDB's '2dsphere' index. All documents of such
data base (i.e., collection) must provide such "geolocation" information.

In such collection of our App database, it was chosen to normalize such
information (s_region and c1,c2 polygons) under a field named geometry. In other
words, data sets containing geolocated information must be preprocessed
before their ingestion into MongoDB. This preprocessing is straightforward
though: for each granule, move (or copy) the required information from either
the s_region or c1,c2 fields and put under geometry.

The field geometry is composed by two sub-fields coordinates and type which
specify the array of coordinates and type of geometry being represented (point,
line, polygon). Details of the structure of these fields are documented in data/.

H2020-INFRAIA-2014-2015 – D6.16

 page 7 of 13

EPN2020 – RI

App

The vespaapp/imports/ui/App.js component is the entry point of data and
initialization of pages of the App. In a React.js software data always go
(naturally) down in the components structure. It is in App.js then that data is
queried and loaded from the (Meteor/DB) collections; then passed as props to
Map/List components.

Routes

When a client starts the App, routes to the multiple pages are initialized. Such
routes are defined in vespaapp/imports/startup/client/routes.js and coupled to
the targets defined in the homepage at vespaapp/import/ui/Home.js.

Map

The vespaapp/imports/ui/Map.js component is responsible for displaying the map-
canvas using Leaflet. Leaflet manages DOM nodes independently of React,
which requires a slightly different design of the Map component when compared
to a pure React class/function. To make them work in harmony, React
Component's lifecycle has to be observed; For instance, one will notice that the
instantiation of Leaflet's layers (map, markers, etc.) is done
inside componentDidMount(), while render()was left with a <div/> placeholder. An
analogous situation happens with the Slider.js component, where jQuery is
required to control the widget.

The Map component is connected to the (data) collection (crism) interface
indirectly through the Meteor.Session global storage structure to allow for
geo/spatial queries. As the user moves the map boundaries (either by zooming
or shifting the basemap), the database is queried for the features (e.g.,
footprints) intersecting the site area. Meteor Session objects are reactive
components, which means that updates to any variable(s) stored in it will
promptly trigger a reaction on any component listening the respective
variable(s).

In the Map component a Session.set() call will perform the update of the global
variable bbox with the updated boundaries of the map after a user interaction.
Consequently, in the App.js component where there is
a Session.get(bbox) statement, a new query (or subscription to be more precise)
to the crism collection will request for new data from the server, which will update
the list of granules presented to the user.

List

In its simplest, the App will display a list of data items. If the user, for example,
ask for data from Jupiter all we can display is a list of images, for instance.

H2020-INFRAIA-2014-2015 – D6.16

 page 8 of 13

EPN2020 – RI

The vespaapp/imports/ui/List.js component, though, implements a somewhat
sophisticated system for rendering items on demand, only the items that fit in
the screen/viewport are rendered. That behavior provides an optimization
regarding the user/client resources (namely memory and bandwidth),
guarantees stability of the software, and ultimately improves the user
experience. Notice that the number of documents (i.e., granules) retrieved from
the database may go up to the thousands, if not properly handled (as
it has been done) the client may simply go out of resources and crash.

Database management system

To manage the data sets used by the app we are using MongoDB.

Data sets

From the point-of-view of user interaction -- and so the way data is presented
-- there are two major groups of our data sets:

 those with geolocated information (EPN-Core's s_region)
 those without geolocated information (empty s_region field)

The s_region field

The s_region field in EPN/TAP services provide geometric information about a
data record (measurement, topography), typically over a planet, in ground
coordinates -- Longitude, Latitude -- of the respective body. In
general, s_region is an array of coordinates (lon,lat) representing a polygon (may
as well be any other geometry -- line, point).

The difference from the database point-of-view is in the index. For efficiency
and consistency in operating geometric queries (e.g., "intersect"), the geometric
figures are indexed accordingly in the database.

MongoDB knows about geometric objects and provide support for geometric
queries. Collections of objects with geometric information may be indexed with
a 2dsphere index -- given the documents provide a type field next to coordinates.

Documents suitable to geometric queries will have the following fields
("location" may be substituted by any other string, e.g. "loc"):

{
 ...
 "location": {
 "coordinates": <array>,
 "type": <string>
 },
 ...
}

Where coordinates are an array of [lon,lat] coordinates as explained in the
GeoJSON reference page, and type must be one of GeoJSON types:

https://docs.mongodb.com/manual/geospatial-queries/
https://docs.mongodb.com/manual/geospatial-queries/

H2020-INFRAIA-2014-2015 – D6.16

 page 9 of 13

EPN2020 – RI

 Point
 LineString
 Polygon
 MultiPoint
 MultiLineString
 MultiPolygon

VESPA data download

Here you will find the list of services suitable for the app, and the files (script,
config, schema, etc.) to download data.

 The selected services with data suitable to our app are in:
o services.json.

 Those services are a selection (of suitable schemas) from:
o virtualRegistry.json

 The columns (i.e., data) we want to download are defined in:
o service_columns.json

 The (python) script responsible for downloading data is:
o download_data.py

 Besides the columns in service_columns.json, an extra
field schema_epn_core is added by the script to the output
(JSON) file

 If using Anaconda Python distro, an environment ("vo") is in:
o conda_environment.yml
o In any case, all we need to use the download script is:

 python (current at 3.7.1)
 pyvo (current at 0.9.2)
 pandas (current at 0.23.4)

H2020-INFRAIA-2014-2015 – D6.16

 page 10 of 13

EPN2020 – RI

App usability

Examples of the app usability on a small-screen device, such as a smartphone,
are provided in Fig 3-6. Larger devices, such as desktop-based browser can be
used in a similar way. While the App provides a lightweight and interactive
interface to the users, when the users find the data resource of interest, they
are redirected to the respective data service providers for further data specific
analysis.

Figure 3: Examples of VESPA web app GUI for Mars. Left: Entry page. Center: Mars OPM-
based map and data product preview, with links to VESPA granule pages. Right: OPM-based
browsable map view and footprint identification and different background basemaps.

H2020-INFRAIA-2014-2015 – D6.16

 page 11 of 13

EPN2020 – RI

Figure 4: Examples of VESPA web app GUI for Mars and linked pages. Left: VESPA app with
exemplary footprints loaded. Center: JacobsUni service with access to individual spectra. Right:
link to VESPA portal, usable also via mobile

Figure 5: Left, center: Examples of VESPA linked granule/data product web pages. Right:
Jupyter full disk images previewed in the VESPA app

Figure 6: Left: Saturn full disk astronomic observations. Center: link to the individual data
product page/browse. Right: VESPA portal entry for the data.

Future applications

The VESPA app showcases some features to interactively discovery, search
and preview of VESPA data. Suitable for mapping datasets, such as CRISM

H2020-INFRAIA-2014-2015 – D6.16

 page 12 of 13

EPN2020 – RI

footprints, it can also support non-geospatial mapping via simple browsing e.g.
of full disk telescopic imagery. The feature of granule filtering by spatial range
has been added and it will be further developed. The support for geospatially-
enabled FITS (see D11.10; Marmo et al., 2019) is also going to be evaluated
and tested, in order to further enable interporability across GIS and VO (See
Minin et al., 2019).

Code repository

The code is publicly available through the GitHub platform
at https://github.com/epn-vespa/vespaapp, under the dedicated EPN-VESPA
repositories directory. The repository is organized at the top level as follows:

 data/
o Necessary files to build the data base: utility software for

downloading and ingesting data into the database, as well as the
documentation to accomplish that.

 docker/
o Optional documentation, setup files and script to run a test

environment through Docker containers.
 docs/

o Documentation meant for developers and technical users.
 vespaapp/

o The App source code

Reference libraries

 CRISM, http://epn1.epn-vespa.jacobs-
university.de/tableinfo/crism.epn_core

 BDIP, http://lesia.obspm.fr/BDIP/
 International Virtual Observatory Alliance, http://www.ivoa.net/
 OpenPlanetary project, https://www.openplanetary.org/
 Leaflet, https://leafletjs.com/
 Meteor, https://www.meteor.com/
 React, https://reactjs.org/
 MongoDB, https://www.mongodb.com/
 Docker, https://www.docker.com/

References cited

Marmo, C., Hare, T., Erard, S., Minin, M., Pineau, F.-X., Zinzi, A., Cecconi, B., Rossi,
A.P. (2019) FITS format for planetary surfaces: definitions, applications and best practice,
Earth and Space Science, DOI:10.1029/2018EA000388

Minin M., Rossi, A. P., Marco Figuera, R., Unnithan, V., Marmo, C., Walter, S.,
Demleitner, W., Le Sidaner, P., Cecconi, B., Erard, S., Hare, T. M. (2019) Bridging the
gap between Geographical Information Systems and Planetary Virtual Observatory.
Submitted to Earth and Space Science (special section Planetary Mapping: Methods,
Tools for Scientific Analysis and Exploration), DOI:10.1029/2018EA000405.

https://github.com/epn-vespa/vespaapp
http://epn1.epn-vespa.jacobs-university.de/tableinfo/crism.epn_core
http://epn1.epn-vespa.jacobs-university.de/tableinfo/crism.epn_core
http://lesia.obspm.fr/BDIP/
http://www.ivoa.net/
https://www.openplanetary.org/
https://leafletjs.com/
https://www.meteor.com/
https://reactjs.org/
https://www.mongodb.com/
https://www.docker.com/

H2020-INFRAIA-2014-2015 – D6.16

 page 13 of 13

EPN2020 – RI

Rossi, A. P., Erard, S., Marmo, C., Minin, M., Brandt, C. H., Fernique, P. (2018) VO-
GIS interface and potential application to space data archives. EuroPlanet H202 RI
deliverable D11.10, availavle online on http://www.europlanet-2020-ri.eu/research-
infrastructure/public-deliverables

